3.1525 \(\int \frac{1}{\sqrt{b x} \sqrt{4+b x}} \, dx\)

Optimal. Leaf size=17 \[ \frac{2 \sinh ^{-1}\left (\frac{\sqrt{b x}}{2}\right )}{b} \]

[Out]

(2*ArcSinh[Sqrt[b*x]/2])/b

________________________________________________________________________________________

Rubi [A]  time = 0.0038164, antiderivative size = 17, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 17, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.118, Rules used = {63, 215} \[ \frac{2 \sinh ^{-1}\left (\frac{\sqrt{b x}}{2}\right )}{b} \]

Antiderivative was successfully verified.

[In]

Int[1/(Sqrt[b*x]*Sqrt[4 + b*x]),x]

[Out]

(2*ArcSinh[Sqrt[b*x]/2])/b

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 215

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[(Rt[b, 2]*x)/Sqrt[a]]/Rt[b, 2], x] /; FreeQ[{a, b},
 x] && GtQ[a, 0] && PosQ[b]

Rubi steps

\begin{align*} \int \frac{1}{\sqrt{b x} \sqrt{4+b x}} \, dx &=\frac{2 \operatorname{Subst}\left (\int \frac{1}{\sqrt{4+x^2}} \, dx,x,\sqrt{b x}\right )}{b}\\ &=\frac{2 \sinh ^{-1}\left (\frac{\sqrt{b x}}{2}\right )}{b}\\ \end{align*}

Mathematica [A]  time = 0.0100814, size = 34, normalized size = 2. \[ \frac{2 \sqrt{x} \sinh ^{-1}\left (\frac{\sqrt{b} \sqrt{x}}{2}\right )}{\sqrt{b} \sqrt{b x}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(Sqrt[b*x]*Sqrt[4 + b*x]),x]

[Out]

(2*Sqrt[x]*ArcSinh[(Sqrt[b]*Sqrt[x])/2])/(Sqrt[b]*Sqrt[b*x])

________________________________________________________________________________________

Maple [B]  time = 0.006, size = 60, normalized size = 3.5 \begin{align*}{\sqrt{bx \left ( bx+4 \right ) }\ln \left ({({b}^{2}x+2\,b){\frac{1}{\sqrt{{b}^{2}}}}}+\sqrt{{b}^{2}{x}^{2}+4\,bx} \right ){\frac{1}{\sqrt{bx}}}{\frac{1}{\sqrt{bx+4}}}{\frac{1}{\sqrt{{b}^{2}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(b*x)^(1/2)/(b*x+4)^(1/2),x)

[Out]

(b*x*(b*x+4))^(1/2)/(b*x)^(1/2)/(b*x+4)^(1/2)*ln((b^2*x+2*b)/(b^2)^(1/2)+(b^2*x^2+4*b*x)^(1/2))/(b^2)^(1/2)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x)^(1/2)/(b*x+4)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 2.11496, size = 59, normalized size = 3.47 \begin{align*} -\frac{\log \left (-b x + \sqrt{b x + 4} \sqrt{b x} - 2\right )}{b} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x)^(1/2)/(b*x+4)^(1/2),x, algorithm="fricas")

[Out]

-log(-b*x + sqrt(b*x + 4)*sqrt(b*x) - 2)/b

________________________________________________________________________________________

Sympy [A]  time = 1.36611, size = 15, normalized size = 0.88 \begin{align*} \frac{2 \operatorname{asinh}{\left (\frac{\sqrt{b} \sqrt{x}}{2} \right )}}{b} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x)**(1/2)/(b*x+4)**(1/2),x)

[Out]

2*asinh(sqrt(b)*sqrt(x)/2)/b

________________________________________________________________________________________

Giac [A]  time = 1.1591, size = 30, normalized size = 1.76 \begin{align*} -\frac{2 \, \log \left ({\left | -\sqrt{b x + 4} + \sqrt{b x} \right |}\right )}{b} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x)^(1/2)/(b*x+4)^(1/2),x, algorithm="giac")

[Out]

-2*log(abs(-sqrt(b*x + 4) + sqrt(b*x)))/b